11 research outputs found

    A novel envelope simulation technique for high-frequency nonlinear circuits

    Get PDF
    The paper proposes a new approach for the analysis and simulation of circuits subject to input signals with widely separated rates of variation. Such signals arise in communication circuits when an RF carrier is modulated by a low-frequency information signal. The approach will involve converting the ordinary differential equation system that describes the circuit to a partial differential equation system and subsequently solving the resultant system using a multiresolution collocation approach involving a cubic spline wavelet-based decomposition

    Efficient simulation of interconnects in high-speed circuits

    Get PDF
    The paper presents an efficient approach for the simulation of interconnects in high-speed circuits based on measured data or simulated EM data. The approach involves forming an initial transmission-line model based on a resonant approach introduced by the authors and subsequently tuning this model to match the measured data. Following tuning, the model is converted to a state-space formulation. This then enables a standard model reduction routine such as the Lanczos process to be applied so as to gain further improvements from a computational efficiency viewpoint. The overall result is a highly efficient interconnect model based on measured data

    Transient simulation of complex electronic circuits and systems operating at ultra high frequencies

    Get PDF
    The electronics industry worldwide faces increasingly difficult challenges in a bid to produce ultra-fast, reliable and inexpensive electronic devices. Electronic manufacturers rely on the Electronic Design Automation (EDA) industry to produce consistent Computer A id e d Design (CAD) simulation tools that w ill enable the design of new high-performance integrated circuits (IC), the key component of a modem electronic device. However, the continuing trend towards increasing operational frequencies and shrinking device sizes raises the question of the capability of existing circuit simulators to accurately and efficiently estimate circuit behaviour. The principle objective of this thesis is to advance the state-of-art in the transient simulation of complex electronic circuits and systems operating at ultra high frequencies. Given a set of excitations and initial conditions, the research problem involves the determination of the transient response o f a high-frequency complex electronic system consisting of linear (interconnects) and non-linear (discrete elements) parts with greatly improved efficien cy compared to existing methods and with the potential for very high accuracy in a way that permits an effective trade-off between accuracy and computational complexity. High-frequency interconnect effects are a major cause of the signal degradation encountered b y a signal propagating through linear interconnect networks in the modem IC. Therefore, the development of an interconnect model that can accurately and efficiently take into account frequency-dependent parameters of modem non-uniform interconnect is of paramount importance for state-of-art circuit simulators. Analytical models and models based on a set of tabulated data are investigated in this thesis. Two novel, h igh ly accurate and efficient interconnect simulation techniques are developed. These techniques combine model order reduction methods with either an analytical resonant model or an interconnect model generated from frequency-dependent sparameters derived from measurements or rigorous full-wave simulation. The latter part o f the thesis is concerned with envelope simulation. The complex mixture of profoundly different analog/digital parts in a modern IC gives rise to multitime signals, where a fast changing signal arising from the digital section is modulated by a slower-changing envelope signal related to the analog part. A transient analysis of such a circuit is in general very time-consuming. Therefore, specialised methods that take into account the multi-time nature o f the signal are required. To address this issue, a novel envelope simulation technique is developed. This technique combines a wavelet-based collocation method with a multi-time approach to result in a novel simulation technique that enables the desired trade-off between the required accuracy and computational efficiency in a simple and intuitive way. Furthermore, this new technique has the potential to greatly reduce the overall design cycle

    An efficient nonlinear circuit simulation technique

    Get PDF
    This paper proposes a new and efficient approach for the analysis and simulation of circuits subject to input signals with widely separated rates of variation. Such signals arise in communication circuits when an RF carrier is modulated by a low-frequency information signal. The proposed technique initially involves converting the ordinary differential equation system, that describes the nonlinear circuit, to a partial differential equation system. The resultant system is then semidiscretised using a multiresolution collocation scheme, involving cubic spline wavelet decomposition. A reduced equation system is subsequently formed, using a nonlinear model reduction strategy. This enables an efficient solution process using trapezoidal numerical integration. Results highlight the efficacy of the proposed approach

    An efficient wavelet-based nonlinear circuit simulation technique with model order reduction

    Get PDF
    This paper proposes further improvement to a novel method for the analysis and simulation of ICs recently proposed by the authors. The circuits are assumed to be subjected to input signals that have widely separated rates of variation, e.g. in communication systems an RF carrier modulated by a low-frequency information signal. The previously proposed technique enables the reuse of the results obtained using a lower-order accuracy model to calculate a response of higher-order accuracy model. In this paper, the efficiency of this method is further improved by using a nonlinear model order reduction technique. Results highlight the efficiency of the proposed approach

    An efficient nonlinear circuit simulation technique

    Get PDF
    This paper proposes a novel method for the analysis and simulation of integrated circuits (ICs) with the potential to greatly shorten the IC design cycle. The circuits are assumed to be subjected to input signals that have widely separated rates of variation, e.g., in communication systems, an RF carrier modulated by a low-frequency information signal. The proposed technique involves two stages. Initially, a particular order result for the circuit response is obtained using a multiresolution collocation scheme involving cubic spline wavelet decomposition. A more accurate solution is then obtained by adding another layer to the wavelet series approximation. However, the novel technique presented here enables the reuse of results acquired in the first stage to obtain the second-stage result. Therefore, vast gains in efficiency are obtained. Furthermore, a nonlinear model-order reduction technique can readily be used in both stages making the calculations even more efficient. Results will highlight the efficacy of the proposed approac

    An efficient numerical algorithm for the transient analysis of high-frequency non-linear circuits

    Get PDF
    The paper proposes a new approach for the discrete-time integration of non-linear differential equations that describe the behaviour of high-frequency circuits, in particular those containing complex equivalent-circuit models of microwave transistor devices. The proposed approach reformulates a conventional predictor-corrector method in terms of Pad�© approximates about each function sample. The method is especially suited to the kind of non-linear stiff differential equations that arise frequently in high-frequency analysis

    Efficient simulation of interconnects in high-speed circuits

    Get PDF
    The paper presents an efficient approach for the simulation of interconnects in high-speed circuits based on measured data or simulated EM data. The approach involves forming an initial transmission-line model based on a resonant approach introduced by the authors and subsequently tuning this model to match the measured data. Following tuning, the model is converted to a state-space formulation. This then enables a standard model reduction routine such as the Lanczos process to be applied so as to gain further improvements from a computational efficiency viewpoint. The overall result is a highly efficient interconnect model based on measured data
    corecore